Fundamentals of

Database

5 th Edition

Elmasri / Navathe

Chapter 14

Frndanrentals of

Database

Elmasri * Navathe

.-i!.l(liﬁ{!l'l _
Wesley

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter Outline

= [ypes of Single-level Ordered Indexes
= Primary Indexes
s Clustering Indexes
= Secondary Indexes

= Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 3

Indexes as Access Paths

s A single-level index is an auxiliary file that makes
It more efficient to search for a record in the data
file.

= [he index is usually specified on one field of the
file (although it could be specified on several
fields)

s One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

= [he index is called an access path on the field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 4

Indexes as Access Paths (contd.)

= The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller

= A binary search on the index yields a pointer to the file
record
s |ndexes can also be characterized as dense or sparse

= A dense index has an index entry for every search key
value (and hence every record) in the data file.

= A sparse (or nondense) index, on the other hand, has
index entries for only some of the search values

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14-5

Indexes as Access Paths (contd.)

s Example: Given the following data file EMPLOYEE(NAME, SSN, ADDRESS,
JOB, SAL, ...)
s Suppose that:
= record size R=150 bytes block size B=512 bytes r=30000 records
= Then, we get:
= blocking factor Bfr= B div R= 512 div 150= 3 records/block
= number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks
= For anindex on the SSN field, assume the field size V¢ 5=9 bytes, assume
the record pointer size P;=7 bytes. Then:
= index entry size R=(Vggt Pr)=(9+7)=16 bytes
index blocking factor Bfr,= B div R= 512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr,)= (30000/32)= 938 blocks
binary search needs log,b,=10g9,938= 10 block accesses= 10+1=11
This is compared to an average linear search cost of:
» (b/2)=10000/2= 5000 block accesses
= If the file records are ordered, the binary search cost would be:
» log,b= log,10000= 100 block accesses

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 6

Types of Single-Level Indexes

» Primary Index
= Defined on an ordered data file
= The data file is ordered on a key field

= Includes one index entry for each block in the data file; the
index entry has the key field value for the first record in the
block, which is called the block anchor

= A similar scheme can use the last record in a block.

= Aprimary index is a nondense (sparse) index, since it
includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14-7

rimary index on the ordering key field

Figure 14.1
Frimary index on the ordering key field of
the file shown in Figure 13.7.

Index file
(<K(i), P(i)> entries)

Block anchor

(Primary
key field)

Data file

Name Ssn

Birth_date

Salary

Aaron, Ed

Abbot, Diane

Acosta, Marc]

Adams, John

Adams, Robin

Akers, Jan |

Alexander, Ed

Alfred, Bob

Allen, Sam |

Allen, Troy

Anders, Keith

Anderson, Rob |

primary key Block
value pointer

Aaron, Ed
Adams, John -~
Alexander, Ed .
Allen, Troy
Anderson, Zach L
Amold, Mack i

Anderson, Zach

Angel, Joe

Archer, Sue |

Arnold, Mack

Arnold, Steven

Atkins, Timothy |

Wong, James

Wood, Donald

Wong, James -

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Woods, Manny |

Wright, Pam "——|—b

Wright, Pam

Watt, Charles

Zimmer, Byron |

Slide 14- 8

Types of Single-Level Indexes

s Clustering Index
= Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary
index, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the field;
the index entry points to the first data block that contains
records with that field value.

= It is another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
iIndex.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14-9

A Clustering Index Example

DATAFILE

s FIGURE 14.2 cugTERNG
A Clusteﬂng |ndex DEPTNUI:"IBEH NAME SSN JOB BIRTHDATE SALARY
on the
DEPTNUMBER
ordering non-key N
field of an (<0, P> oot
EMPLOYEE file. G pa,

1

\.\.\.\\
Bl alwWlWw W W |w (N M= | =

@ |® || &M
L]
Y

a4

Lo =R e T o))

oW (o | |d

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14-10

Another Clustering Index Example

Figure 14.3 ; Lata T
S . (Clustering
Clustering index with a field)
separate block cluster Dept_number | Name | Ssn_ | Job |Birth_date | Salary
for each group of e 1
records that share the 1
same value for the 1
clustering field.
Block pointer 0—1
L NULL pointer
—_ > I I .
2 | [[] |
Block pointer .__J_
L NULL pointer
S 3 -
3
3
Index file 3 -
(<K(), P()> entries) Block pointer 0—‘
e T T T 1]
Clustering Block Block pointer -—l
field value pointer NULL pointer
1 —F 4 I I]
2 4 | [[] |
3
Block pointer .
4 han
5 pa— L NULL pointer
[—= 5 _
) 5
5
5
Block pointer 0—1
L NULL pointer
p =
]
-]
&
Block pointer e———
|
e B R B [
Block pointer -—
| NULL pointer
= 8 =
8
8
Block pointer '—1
NULL pointer

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 11

Types of Single-Level Indexes

= Secondary Index

= Asecondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

= The index is an ordered file with two fields.

= The first field is of the same data type as some non-ordering
field of the data file that is an indexing field.

=« The second field is either a block pointer or a record pointer.

= There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Includes one entry for each record in the data file; hence, it
IS a dense index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14-12

Example of a Dense Secondary Index

Figure 14.4

A dense secondary index (with
block pointers) on a nonordering
key field of a file.

Data fil
Index file atatie
(<K(i), P()> entries) Indexing field
(secondary
key field)
Index Block —_— 9
field value pointer =
1 " o 5
2 - 13
3 8
: L, :
2 : Il > 15
7 = 3
8 17
] > 21
9 ; = 1
11 - 2
12 7
13 — = 24
14 | > 10
15 * = 20
16 r 3
! .
17 - = 4
18 . - 23
19 Ly 18
20 14
21 .
22 - = 12
28 Tl = U
24 . . 19
29

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14-13

An Example of a Secondary Index

Data file
(Indexing field)
Dept_number | Name | Ssn | Job |Birth_date | Salary
—— 3
Blocks of - 5
record .]
pointers
‘ e 5
=4[
[2
I -
4 = 4
Index file —T—l—‘ - 8
(<K(), P()> entries) i
Field Block o ITIT. - 6
value pointer _ 3
— ! =
| I - 4
2 —] lI —
3 4
i =
5 '——|_. ' - 6
] L [- 5
. — {TiTe ‘ —
- E - 5
[
Lw[e]4
- 5
— -
: - 6
- 3
- 6
L = 3
e 8
- e 3
Figure 14.5

A secondary index (with record pointers) on a nonkey field implemented using one level
of indirection so that index entries are of fixed length and have unique field values.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 14- 14

Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX)
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense

2Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
For options 2 and 3.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 15

Multi-Level Indexes

s Because a single-level index is an ordered file, we can
create a primary index to the index itself;
= In this case, the original index file is called the first-level

Index and the index to the index is called the second-level
Index.

s We can repeat the process, creating a third, fourth, ..., top
level until all entries of the top level fit in one disk block

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 16

A Two-level Primary Index

Two-level index Data file
First (base) Primary
level key field
- 2 — 9
8 — 5
15 -—
24 -—1
12
15
21
24
Second (top) 29
level
2 . |—» 35 = [35
35 -— 39 — 36
65 . 44 .
85 51 -— 39
41
44
486
51
52
‘= 55 -— 55
63 . 58
71 . _|_’
80 —] 63
66
71
78
80
= 88 '_1 82
85
89
Figure 14.6

A two-level primary index resembling ISAM (Index Sequential Access Method) organization.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 17

Multi-Level Indexes

s Such a multi-level index is a form of search tree

= However, insertion and deletion of new index
entries is a severe problem because every level of
the index is an ordered file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 18

A Node in a Search Tree with Pointers to
Subtrees below It

= FIGURE 14.8

-——— 0

X<K, Ki_;<X<K, Kg-1<X

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 19

FIGURE 14.9
A search tree of order p = 3.

Null tree pointer

|E| Tree node pointer

VAN

—————@

/ N\

1 7 8 12

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 20

Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem

= This leaves space in each tree node (disk block) to allow for
new index entries

m | hese data structures are variations of search trees that
allow efficient insertion and deletion of new search values.

s In B-Tree and B+-Tree data structures, each node
corresponds to a disk block

s Each node is kept between half-full and completely full

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 21

Dynamic Multilevel Indexes Using B-Trees
and B+-Trees (contd.)

= An insertion into a node that is not full is quite
efficient

= If a node is full the insertion causes a split into two
nodes

s Splitting may propagate to other tree levels

s A deletion is quite efficient if a node does not
pecome less than half full

m |f a deletion causes a node to become less than
nalf full, it must be merged with neighboring
nodes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 22

Difference between B-tree and B+-tree

= |n a B-tree, pointers to data records exist at all
evels of the tree

= |n a B+-tree, all pointers to data records exists at
the leaf-level nodes

= A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 23

B-tree Structures

Figure 14.10
B-Tree structures. (a) A node in a B-tree with g — 1 search values. (b) A B-tree
of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

(a) rP‘| K'I |P'r'| ‘TPQ e }<I‘—1 “Pr!'—? T Pf P(f llPrfl . Kq_1 IIPrq_1 PQ 1
Tree Tree
| Y pointer | | Y pointer
Trge Data Data Data Data
pointer pointer pointer pointer pointer
Tree
pointer
X< K, K_ < X<K, K1 <X
(b) o5 |0 T 8 |of |e ¢ | Tree node pointer
o | Data pointer
Null tree pointer
1 |o 3 |o 6 [o 7 |0 9 o 12|0

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 24

The Nodes of a B+-tree

FIGURE 14.11 The nodes of a B+-tree

= (a) Internal node of a B+-tree with g —1 search values.
= (b) Leaf node of a B+-tree with q — 1 search values and q — 1 data pointers.

(a) P K K P K K
1 1 i—1 i i q-1
» ’ X
tree l tree tree
pointer pointer pointer
X /\ X
X<K _1<X=K I'(q_1 <X
b pointer to next
®) K, ﬁr Ks Izr F:r q-1 F;rq 1 Pext o1—» leafnode
in tree
y Y Y Y
data data data data
pointer pointer pointer pointer
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 25

An Example of an Insertion in a B+-tree

Figure 14.12
An example of insertion in a B*-tree with p =3 and p ;= 2.

Insertion sequence: 8,5,1,7,3,12,9,6

-I—Insen 1: overflow (new level)
5

| [+f] _l [S———

[(3 [1

Insett 3: overflow = IEE

(split)

H Tree node pointer

Iﬂ Data pointer

D Null tree pointer

Insert 12: overflow (split, propagates,
new level)

(56 B -[EE

[~ e o] |

—FIER T
FEL 1) (e

Insert 9

|] (1] |4~ [ETe]

+
- EEEE]

c[E]]
&l] hlEh]

Y
[6 Bl |-+ Bl

- EELE-EE]

H@ n-l Insert 6: overflow (split, propagates)

HIEIA AR IR

| CTe] [51o] [~ [eTe]

¢
- EE EEE-EE

Y
EaioojEo)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Slide 14- 26

An Example of a Deletion in a B+-tree

Deletion sequence: 5,12, 9
v o[- =4 '
SEENERS 1o [+

\i

B - [EE EE-[EE - [EEEEf-ET)

!
pelete I I
S RENENE e [-—H

[EE) [~{EE] |+~[CE] I+IISI°IIQI°II+M1TI]

Delete 12: underflow

¢
AR
-

([[-[E [~[E |4~ EE]
|: (me ;”w. hgl ft, ddmowb}

i
E [f—{Eg [——{Ea [{E"]

Figure 14.13
An example of deletion from a B‘—tree.

(redistribute)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 27

Summary

= [ypes of Single-level Ordered Indexes
= Primary Indexes
s Clustering Indexes
= Secondary Indexes

s Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 28

