
13-02-2021

1

Relational Algebra

Relational Query Languages
• Languages for describing queries on a relational

database

• Allow manipulation and retrieval of data from a
database.

• Query Languages != programming languages!
– QLs not expected to be “Turing complete”.

– QLs not intended to be used for complex calculations.

– QLs support easy, efficient access to large data sets.

Remark: There are new developments (e.g. SQL3) with the goal: SQL=PL

Formal Relational Query Languages

Two mathematical Query Languages form the basis for
“real” languages (e.g. SQL), and for implementation:

¶ Relational Algebra: More operational, very useful for
representing execution plans.

∙ Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-operational,
declarative.)

13-02-2021

2

Why is Relational Algebra
Important?

As a theoretical foundation of the relational data model
and query languages.

It introduces a terminology that is important to talk
about relational databases (e.g. join,…)

As a language to specify plans that implement SQL
queries (query optimization; implemetation of
relational DBMS)

Some people believe that knowing relational algebra
makes it easy to write correct SQL queries.

5

What is an Algebra?

• A language based on operators and a domain of values

• Operators map values taken from the domain into
other domain values

• Hence, an expression involving operators and
arguments produces a value in the domain

• When the domain is a set of all relations (and the
operators are as described later), we get the relational
algebra

• We refer to the expression as a query and the value
produced as the query result

6

Relational Algebra

• Domain: set of relations

• Basic operators: select, project, union, set
difference, Cartesian product

• Derived operators: set intersection, division, join

• Procedural: Relational expression specifies query
by describing an algorithm (the sequence in which
operators are applied) for determining the result of
an expression

13-02-2021

3

7

Relational Algebra in a DBMS

parser

SQL
query

Relational
algebra
expression

Optimized
Relational
algebra
expression

Query optimizer

Code
generator

Query
execution
plan

Executable
code

DBMS

Relational Algebra Operators/Operations

• Basic operations:

– Selection () Selects a subset of rows from relation.

– Projection () Deletes unwanted columns from relation.

– Cross-product () Allows us to combine two relations.

– Set-difference () Tuples in relation 1, but not in relation 2

– Union () Tuples in relation 1 or in relation 2 or in both

• Additional operations:

– Intersection, join (natural join, theta join, equi-join, outer join),
division, renaming: Not essential, but (very!) useful.

• Since each operation returns a relation, operations can be
composed!

• Relational Algebra is “closed”. The operators take one or more
relations as inputs and give a new relation as a result.







U

Select Operation
• Notation:  p(r)
• p is called the selection predicate
• Defined as:

p(r) = {t | t  r and p(t)}
Where p is a formula in propositional calculus consisting
of terms connected by :  (and),  (or),  (not)
Each term is one of:

<attribute> op <attribute> or <constant>
where op is one of: =, , >, . <. 

• Example of selection:
 branch-name=“Perryridge”(account)
Salary > 40000 (Employee)

13-02-2021

4

Select Operation Example

Salary > 40000 (Employee)

SSN Name Salary

1234545 John 200000

5423341 Smith 600000

4352342 Fred 500000

SSN Name Salary

5423341 Smith 600000

4352342 Fred 500000

Employee

Project Operation

• Notation:
A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation
name.

• The result is defined as the relation of k columns
obtained by erasing the columns that are not listed

• Duplicate rows removed from result, since
relations are sets

• E.g. To eliminate the branch-name attribute of
account

account-number, balance (account)

13-02-2021

5

Project Operation Example

 Name,Salary (Employee)

SSN Name Salary

1234545 John 200000

5423341 John 600000

4352342 John 200000

Name Salary

John 20000

John 60000

Cartesian-Product Operation

• Notation r x s

• Defined as:

r x s = {t q | t  r and q  s}

• Assume that attributes of r(R) and s(S) are
disjoint. (That is,
R  S = ).

• If attributes of r(R) and s(S) are not disjoint,
then renaming must be used.

• Very rare in practice; mainly used to express
joins

13-02-2021

6

Cartesian Product Example

Cartesian Product Example

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
EmployeeSSN Dname
999999999 Emily
777777777 Joe

Employee x Dependents
Name SSN EmployeeSSN Dname
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Union Operation

• Notation: r  s

• Defined as:

r  s = {t | t  r or t  s}

• For r  s to be valid we need union compatibility.

1. r, s must have the same arity (same number of
attributes)

2. The attribute domains must be compatible

• E.g. to find all customers with either an account or a loan
customer-name (depositor)  customer-name (borrower)

13-02-2021

7

Union Example

Set-Intersection Operation

• Notation: r  s

• Defined as:

• r  s ={ t | t  r and t  s }

• Assume:
– r, s have the same arity

– attributes of r and s are compatible

• Note: r  s = r - (r - s)

Intersection Example

13-02-2021

8

Set Difference Operation

• Notation r – s

• Defined as:

r – s = {t | t  r and t  s}

• Set differences must be taken between
compatible relations.
– r and s must have the same arity

– attribute domains of r and s must be compatible

Set Difference Example

Join Operation

• A combination of a Cartesian product followed
by a selection process.

• Pairs two tuples from different relations, if and
only if a given join condition is satisfied.

• Can be classified as:
– Inner join

• Theta join

• Equi-join

• Natural join

– Outer join
• Left-outer, Right-outer, and Full-outer

13-02-2021

9

Theta Join

• Theta join combines tuples from different
relations provided they satisfy the theta
condition.

• The join condition is denoted by the symbol θ

where θ is a predicate using any of the six
relational operators {<, <=, >, >=, =, !=}

R1 ⋈θ R2

Equi Join

• When Theta join uses only equality comparison
operator, it is said to be equijoin.

Natural Join

• A type of equi-join in which columns with the
same name of associated tables will appear once
only.

• Represented by * or

• The natural join can be applied over two tables
provides:
– The tables have one or more pairs of identically

named columns.

– The columns must be the same data type.

⋈

13-02-2021

10

Natural Join (cont…)

• R1* R2 = A(C(R1  R2))

• Where:
– The selection C checks equality of all common

attributes
– The projection eliminates the duplicate common

attributes

Natural-Join (Cont…)

Natural Join Example-1

13-02-2021

11

Employee
Name SSN
John 999999999
Tony 777777777

Dependents
SSN Dname
999999999 Emily
777777777 Joe

Name SSN Dname
John 999999999 Emily
Tony 777777777 Joe

Employee * Dependents

Natural Join Example-2

Natural Join Example-3

• R= S=

• R * S=

A B

X Y

X Z

Y Z

Z V

B C

Z U

V W

Z V

A B C

X Z U

X Z V

Y Z U

Y Z V

Z V W

Outer Join
• An extension of the join operation that

avoids loss of information.

• Computes the join and then adds tuples
form one relation that do not match tuples
in the other relation to the result of the join.

• Uses null values:
– null signifies that the value is unknown or does

not exist

– All comparisons involving null are (roughly
speaking) false by definition.

• Will study precise meaning of comparisons with
nulls later

13-02-2021

12

Outer Join Example

13-02-2021

13

Division Operator

Division Example

Division Example2

13-02-2021

14

Other Examples of Division A/B

��� ���
�� ��
�� ��
�� ��
�� �	
�� ��
�� ��
�� ��
�	 ��
�	 �	

���
��
�	

���
��
��
�	

���
��
��
��
�	

���
��
�	

���
��

�� ��
��

���
���
���

���
��

Rename Operation

• Allows us to name the results of relational-algebra
expressions.

• Changes the schema, not the instance

• Allows us to refer to a relation by more than one name.

Example:

 X (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

X (A1, A2, …, An) (E)

returns the result of expression E under the name X, and
with the attributes renamed to A1, A2, …., An.

Renaming Example

Employee
Name SSN
John 999999999
Tony 777777777

LastName SocSocNo
John 999999999
Tony 777777777

LastName, SocSocNo (Employee)

13-02-2021

15

Aggregate Functions

Example

Example

13-02-2021

16

Finally: RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!! Need to write C program

Name1 Name2 Relationship

Fred Mary Father

Mary Joe Cousin

Mary Bill Spouse

Nancy Lou Sister

Practice Exercise
Consider the following database schema and write
Relational Algebra expressions and SQL codes to
answer Queries 1-16.

• Emp(empNo, name, gender, city, salary, depNo)

• Dept(depNo, depName, depLoc)

• Project(pNo, pName, pDep, pDuration, pCost)

• EmpProj(empNo, pNum, startDate)

13-02-2021

17

Example Queries

• Q1: Retrieve empNo of all those employees
who work on at least one project.

Result  Projection empNo (EmpProj)

• Q2: Retrieve the names of all those
employees who work on at least one
project.

R1  Projection empNo (EmpProj)

R2  R1 * Emp

Result  Projection name (R2)

• Q3: Retrieve empNo of all those employees
who work on at least two projects.

R1  empNo g count(empNo) as cnt (EmpProj)

R2  Selection cnt > 1 (R1)

Result  Projection empNo(R2)

• R3  R2 * Emp

• Result  Projection name (R2)

13-02-2021

18

• Q4: Retrieve the names of all those
employees who work on at least two
projects.

R1  empNo g count(empNo) as cnt (EmpProj)

R2  Selection cnt > 1 (R1)

R3  R2 * Emp

Result  Projection name (R2)

• Q5: Retrieve the names of all those
employees who don’t work on any project.

R1  Projection empNo (EmpProj)

R2  Projection ssn (Emp)

R3  R1 – R2

R4  R3 * Emp

Result  Projection name (R4)

• Q6: Retrieve the names of all those employees
who work on all projects on which e4 works.

R1  Projection empNo (EmpProj)

R2  Projection ssn (Emp)

R3  R1 – R2

R4  R3 * Emp

Result  Projection name (R4)

13-02-2021

19

• Q7: Retrieve the names of all those projects on which no
employee works.

• Q8: Retrieve the names of all those projects on which
more than 3 employee works.

• Q9: Retrieve the names of all those employees of the CS
department who work on at least two projects.

• Q10: Retrieve the names of all those employees of the
CS department who work on at most two projects.

• Q11: Retrieve the names of the departments that have at
least 3 employees and execute at least one project.

• Q12: Retrieve the names of all those departments who
don’t execute any project.

• Q13: Retrieve the names of all those departments with
two or more employees who don’t execute any project.

• Q14: Retrieve the name of the department which
executes maximum number of projects.

• Q15: Retrieve the name of the department which
executes minimum number of projects.

• Q16: Retrieve the name of the department which
executes second highest number of projects.

• Q17: Retrieve the name of the project on which
maximum number of female employees work.

• Q18: Retrieve the name of the department with
maximum number of female employee.

• Q19: Retrieve the name of the employees who work on
all those projects on which employees of ‘New Delhi’
work.

