
EER Diagram

The Enhanced Entity-Relationship (EER) model is a high-level or conceptual data

model incorporating extensions to the original Entity-relationship (ER) model discussed

in the previous chapter. Like ER model, it is used for a logical representation of

databases. It was developed to cater the need to model more precise properties and

constraints that are found in complex databases, such as Computer-Aided Design (CAD),

Computer-Aided Manufacturing (CAM), telecommunications, and Geographic Information

Systems (GIS). The EER Model includes all of the modeling concepts introduced by the

ER model along with the additional concepts of subclass/superclass that further define

the concepts of specialization/generalization and type inheritance, union, aggregation

and composition. In this chapter we discuss all these concepts along with their

representation techniques in EER diagram to model complex databases.

3.1 Subclass and Superclass

An entity type (discussed in the previous chapter) in many cases can have further sub-

groupings of its entities and these subgroups, mostly being meaningful, need to be

represented explicitly because of their significance to the database application. For

example, the entities belonging to the Employee entity type in a software development

company may be further grouped into Manager, Database Administrator, Database

Designer, and Application Developer. The set of entities belonging to each of these

later groupings is a subset of the entities that belong to the Employee entity set i.e.

every entity that is a member of these subgroupings is also a member of Employee

entity set. If such subgroups exist for an entity set E, we call each such subgroup a

subclass of the entity type E and the entity type E as the superclass of these

subgroups. It means that Manager is a subclass of the entity type Employee and the

entity type Employee is the superclass of the subgroups Manager, Database

Administrator, Database Designer, and Application Developer. Like Manager,

Database Adminsitrator, Database Designer and Application Developer are also

subclasses of Employee entity type. The relationship between a superclass and any one

of its subclasses is called a superclass/subclass relationship, e.g., Employee/Manager has

a superclass/subclass relationship. Using the concept of superclass and subclass avoids

describing different types of entities with possibly different attributes within a single

entity. For example, Manager may have additional attributes than the attributes of other

employees like manager start date and average monthly business of the manager. It can

be noted that if all the employee attributes and the attributes specific to the subclasses

sshuv
Highlight

sshuv
Highlight

sshuv
Comment on Text
খাদ্য সরবরাহ করা

sshuv
Highlight

of employees are described by a single Employee entity, it may result in null values for

the subclass specific attributes for a lot of employees.

Thus the reason behing using the concepts of the superclass and the subclass can be

summarized as follows:

To avoid describing similar concepts more than once, thereby saving time for the

designer and making the ER diagram more readable.

To add more semantic information to the design in such a way that it becomes

familiar to many people. For example, the assertions that “Manager IS-A

member of Employees” communicates significant semantic content in a concise

form.

Being merely a member of a subclass is not sufficient for a particular entity to be

included in the database. Rather, alongwith the membership of the subclass the entity

must also be a member of its superclass. However, it is not necessary for an entity of a

superclass to be a member of one or more subclasses. For example, in the

superclass/subclass relationship Employee/Manager all managers are also an employee

but all employees need not be a manager.

3.2 Type Inheritance

In object-oriented programming inheritance is a way to form new classes using classes

that have already been defined. The new classes, known as subclasses (or derived

classes), inherit attributes and behavior of the pre-existing classes, which are referred to

as superclasses (or ancestor classes). An entity in the subclass represents the same

“real world” object as in the superclass and may possess some subclass-specific

attributes in addition to those associated with the superclass i.e. we can say that a

member of subclass inherits all the attributes of its superclass along with having its own

specific attributes. For example, a member of the Manager subclass inherits all the

attributes of the Employee superclass like empId, empName, empDesignation,

empDateOfBirth etc. together with those specifically associated with the Manager

subclass like managerStartDate. In addition to attributes, subclasses also inherit all the

relationships in which the superclass participates. For example, if the entity type

Employee is associated with Department entity type through WorkFor relationship, then

all its subclasses will also participate in the WorkFor relationship.

Figure 3.1 – A type hierarchy for Vehicle entity type

Figure 3.2 – A multiple-inheritance (lattice) in which the entity type Aircraft inherits

attributes from GroundVehicle and FlyingVehicle entity types.

Being an entity, it is also possible for a subclass to have one or more subclasses.

Similarly the subclasses of a subclass may further have one or more subclasses and so

on forming a type hierarchy. Figure 3.1 shows a type hierarchy of Vehicle entity type.

A type hierarchy can be represented by various names; generalization hierarchy (for

example, Employee is a generalization of Manager), specialization hierarchy (Manager is

a specialization of Employee), IS-A hierarchy (Manager IS-A Employee). Generalization

and specialization are further discussed in the following section.

In case a subclass inherits attributes from multiple superclasses, the subclass is called a

shared subclass and the type of inheritance demonstrated by the subclass and its

super classes is referred as multiple inheritance and it forms a lattice. Another

classification of Vehicle entity type to exemplify the concept of multiple inheritance is

shown in figure 3.2.

3.3 Specialization and Generalization

The process of identifying and defining the set of subclasses of an entity type is referred

to as specialization. The set of subclasses that forms the specialization is identified on

the basis of some distinguishing characteristics of the entities in the entity type that

represents the superclass. Following a top-down approach, as we identify a set of

subclasses of an entity type, we associate attributes specific to each subclass (where

necessary), and also identify any relationships between each subclass and other entity

types or subclasses (where necessary). For example, the set of subclasses {Permanent,

Temporary} represents the specialization of the superclass Employee and distinguishes

the entities belonging to the Employee superclass based on the nature of appointments

of the employees. It is possible to have multiple specializations of a single entity type

based on different distinguishing characteristics. For example, the set of subclasses

{Salaried, HourlyPaid} represents another specialization of the Employee entity type

based on the method of payment for an employee. It should be however noted that

within a specialization, it is possible that two subclasses overlap i.e. the same entity of

the superclass may be a member of more than one subclass (overlapping subclasses) of

the specialization for example an employee can be salaried but get paid on hourly basis

for working on some extra projects as well.

In order to draw EER diagram, the subclasses that define a specialization are attached

by lines to a circle (not used if the specialization contains only one subclass), which is

connected to the superclass with single (or double) lines. Depending on the

characteristics of specialization, the circle contains either ‘d’ or ‘o’ to represent disjoint

or overlap respectively. The subset symbol on each line connecting the subclass to the

circle indicates the direction of the superclass/subclass relationship. Each subclass is

attached with its subclass-specific attributes. The significance of the single and double

lines from the superclass to the circle and the letters d and o within the circle will be

discussed in the following section. Figure 3.3 shows the EER diagram to represent

specialization and subclasses for Employee entity type. The figure defines two

specializations of Employee – {Permanent, Temporary} and {Salaried, HourlyPaid}.

Figure 3.3 - EER diagram representing specialization of Employee entity type

Generalization is the inverse process of specialization. It follows a bottom-up approach

to identifify a generalized superclass from the original entity types. This involves

suppressing the differences among the several entity types, identifying their common

features and generalizing them into a single superclass. For example, consider the entity

types Bus and Truck shown in figure 3.4 (a). As their attributes depict, they can be

generalized into the entity type Vehicle as shown in figure 3.4 (b).

As already mentioned that the generalization process can be viewed as being functionally

inverse of the specialization process, figure 3.4 (b) can also be viewed as a specialization

of Vehicle into {Bus, Truck} and the figure 3.3 can be viewed as a generalization of

{Permanent, Temporary} into Employee. To distinguish between generalization and

specialization, often a diagrammatic notation is used in some design methodologies

where an arrow pointing to the generalized superclass represents generalization and the

arrow pointing to the specialized subclass represents a specialization. But, mostly such a

notation is not used as the decision as to which process is more appropriate in a

particular situation is often subjective.

Figure 3.4 – Example of generalization (a) Two entity types Bus and Truck (b)

Generalization of Bus and Truck into Vehicle.

3.3.1 Types of Specialization/Generalization

In this section we discuss different types of specialization/generalization. Since

specialization and generalization processes are functionally inverse to each other; for

brevity, our discussion refers only to specialization but it applies equally to both

specialization and generalization. Table 3.1 presents a summarized view of the types of

specialization that can be defined for an entity type. As discussed earlier, an entity type

(superclass) may have specializations to different set of subclasses and for entities of the

superclass it is not mandatory that they will belong to all subclasses of a specialization.

Therefore, in some specializations predicates can be defined on the value of some

(b)

(a)

attribute of the superclass to determine exactly the superclass entities that will become

members of each subclass. Such a subclass is called condition-defined (or predicate-

defined) subclass. The predicate-defined subclasses are displayed in EER diagram by

writing the predicate condition as a label to the line joining the subclass to the

specialization circle. As shown in figure 3.5, the appointmentType attribute of Employee

can be used to define predicates (appointmentType = ‘Permanent’) for Permanent

subclass. This means that the members of the Permanent subclass must satisfy the

predicate appointmentType = ‘Permanent’ and all entities of the Employee entity type

whose attribute vale for appointmentType is ‘Permanent’ must belong to the Permanent

subclass. Similarly, by using the predicate appointmentType = ‘Temporary’ the

members of Temporary subclass can be determined.

Table 3.1 – Types of specialization/generalization

Condition-defined or Predicate-defined specialization/generalization

Attribute-defined specialization/generalization

User-defined specialization/generalization

Figure 3.5 – An attribute-defined specialization on the appointmentType attribute of

Employee entity type

If all subclasses in a specialization are conditioned-defined on same attribute of the

superclass, the specialization is called attribute-defined specialization and the

attribute is called the defining attribute (or discriminator in UML terminology) of the

specialization. Otherwise, the specialization (subclass) is called user-defined

specialization (user-defined subclass). In EER diagram, as shown in figure 3.5, we

write the defining attribute as label of the line joining the specialization circle to the

superclass. Membership in a user-defined subclass is determined by the database users

while adding entities to the subclass, not by any condition that can be evaluated

automatically.

3.3.2 Constraints on Specialization and Generalization

In this section we discuss different types of constraints that can be applied to

specialization and generalization. Like discussing types of specialization in the previous

section, for brevity, our discussion about constraints refers only to specialization but it

applies to both specialization and generalization. The constraints that apply to

specialization and generalization are summarized in table 3.2 and discussed in the

following paragraphs.

Table 3.2 – The constraints that apply to specialization and generalization

Disjointness/Overlap Constraint

Completeness Constraint

Total Specialization

Partial Specialization

Since Disjointness/Overlap and Completeness constraints are independent, the

constraints on specialization can be redefined as:

Disjoint, total

Disjoint, partial

Overlapping, total

Overlapping, partial

Disjointness/Overlap Constraint

The disjointness/overlap constraint specifies that whether in a superclass/subclass

relationship it is possible for a member of a superclass to be a member of one or more

than one subclass. In case a superclass has more than one subclass in a specialization,

the disjointness constraint specifies that the subclasses in the specialization must be

disjoint, i.e., an entity occurrence can be a member of at most one of the subclasses of

the specialization. For example, the subclasses Permanent and Temporary of the

superclass Employee, shown in figure 3.3, are disjoint which means that an employee

can have either permanent or temporary (but not both) appointment in an organization.

In order to represent disjointness constraint in the EER diagram, we place a symbol ‘d’ in

the circle that connects a superclass and all its subclasses indicating that a member of

the superclass can be a member of only one of its subclasses.

In case the subclasses of a specialization are not disjoint, their set of entities may

overlap, i.e., an entity can be a member of more than one subclass of the specialization.

For example, in figure 3.3 the subclasses Salaried and HourlyPaid of the superclass

Employee are not disjoint. An employee can be a member of both of these subclasses

since the two subclasses overlap – as an employee can be salaried but get paid on

hourly basis for working on some extra projects as well. This type of constraint (overlap

constraint), which is the default, is represented in the EER diagram by placing the letter

‘o’ in the circle connecting a superclass and its subclasses as shown in figure 3.3.

Completeness Constraint

The completeness constraint determines whether every member in the superclass must

participate as a member of a subclass. It may be total or partial. If it is mandatory that

every entity in the superclass must be a member of some subclass in the specialization,

then the specialization is said to be total specialization. For example, the {Salaried,

HourlyPaid} specialization of the Employee entity type in figure 3.3 is a total

specialization as every member of the Employee superclass must be a member of either

the salaried subclass or the hourlyPaid subclass because every employee has either of

the two methods to get payment. In the EER diagram, the total participation is

represented by specifying double lines when connecting a superclass with the circle that

connects its subclasses as shown in figure 3.3.

Another type of completeness constraint is the partial specialization which specifies

that it is not mandatory for the members of a superclass to belong to any of its

subclasses. For example, for the members of the superclass Employee, it is not

mandatory to be a member of the subclasses Permanent and Temporary as an employee

can have other type of appointments like contractual, against leave vacancy, etc. In the

EER diagram, partial specialization is represented by using single line to connect the

superclass entity type with the circle that connects its subclasses, as shown in figure 3.3.

Since, the disjointness/overlap and completeness constraints are independent;

combining these together may yield the following four types of constraints on

specialization:

Disjoint-total

Disjoint-partial

Overlapping-total

Overlapping-partial

A specialization of a superclass entity type in which all subclasses are disjoint and every

entity of the superclass must belongs to a subclass is called disjoint-total

specialization. For example, in figure 3.6 the subclasses Teaching and NonTeaching

are disjoint and an entity of the Employee class must belong to either Teaching subclass

or NonTeaching subclass. Hence, the specialization shown in figure 3.6 is disjoint-total.

A specialization of a superclass entity type in which all subclasses are disjoint and it is

not mandatory for an entity of the superclass to be a member of a subclass is called

disjoint-partial specialization. For example, in figure 3.7 the subclasses Permanent

and Temporary are disjoint and every entity of the Employee class is not compelled to be

a member of these subclasses as there might be some employees having different types

of appointments like contractual, daily wager, etc. Hence, the specialization shown in

figure 3.7 is disjoint-partial.

A specialization of a superclass entity type in which all subclasses are not disjoint rather

overlapping and every entity of the superclass must belongs to a subclass is called

overlapping-total specialization. For example, in figure 3.8 the subclasses Salaried

and HourlyPaid are overlapping as there may be some employee who is salaried but get

paid on hourly basis for working on some extra projects as well. Moreover, every

Employee entity will be a member of either Salaried or HourlayPaid because each of

them has either of the two methods to get payment. Hence, the specialization shown in

figure 3.8 is overlapping-total.

Figure 3.6 – A disjoint-total specialization of Employee entity type

A specialization of a superclass entity type in which all subclasses are not disjoint rather

overlapping and it is not mandatory for an entity of the superclass to be a member of a

subclass is called overlapping-partial specialization. For example, in figure 3.9 the

specialization of Car entity type into the subclasses PetrolEngineCar,

DieselEngineCar, and CNGEngineCar are overlapping – as there may be combo-engine

cars, i.e. a car may have petrol as well as CNG engine. Moreover, if there is a car that

has electric engine it will not be a member of either of these classes. Hence, the

specialization shown in figure 3.9 is overlapping-partial.

Figure 3.7 – A disjoint-partial specialization of Employee entity type

Figure 3.8 – An overlapping-total specialization of Employee entity type

Figure 3.9 – An overlapping-partial specialization of Car entity type

3.4 UNION Type or Category

In the previous sections, we have discussed two different types of superclass/subclass

relationships – (i) a type hierarchy, as shown in figure 3.1, in which a subclass has only

one superclass, (ii) a lattice, as shown in figure 3.2, in which a subclass is shared among

different superclass/subclass relationships. For example, in figure 3.2, the shared

subclass, Aircraft, is the subclass participating in two distinct superclass/subclass

relationships, where each of the two relationships has a single superclass. However, it is

not uncommon that we may need to model a single superclass/subclass relationship with

more than one superclass, where the superclasses represent different entity types. In

such a case, the entity set for the subclass represent a collection of entity instances that

is a subset of the UNION of the instances of distinct entity types (superclasses) and such

a subclass is called a union type or a category. In EER diagram, all superclasses of a

subclass are connected through a circle which contains a union symbol () representing

the set UNION operation. An arc with the subset symbol connects the circle to the

subclass (category). It specifies that the entity set of the subclass is the subset of the

UNION of the entity-instances of the superclass entity types.

For example, consider the entity types: Graduate, and NonGraduate. In a database

dealing with engineering project allotment, each of the previous two entities can be an

employee. Designing a model for such a database will involve creating a class (collection

of entities) that includes entities of all the above two categories. That is, a category

Employee which would be a subclass of the UNION of the entity types Graduate, and

NonGraduate is created for this purpose. Similarly, a category, engineeringProject, is

created which entity set is the subset of the UNION of the entity instances of the

superclasses LongTermProject and ShortTermProject. The EER diagram modeling

using categories for this assignment is shown in figure 3.10.

Figure 3.10 – An EER diagram modeling using categories for engineering project

assignment

3.4.1 Difference Between Category and Lattice

It should be noted that a category is not same a lattice (multiple inheritance) in which

too a subclass has two or more superclasses. For example, in figure 3.2 Aircraft is a

subclass of two superclasses GroundVehicle and FlyingVehicle, so an entity that is a

member of Aircraft must exist in both the superclasses GroundVehicle and

FlyingVehicle. This represents the constraint that the entity set of Aircraft must be a

subset of the intersection of the entity sets of GroundVehicle and FlyingVehicle. On

the other hand, a category has two or more superclasses that may represent distinct

entity types. That is, a category is the subset of the UNION of its superclasses. Hence, it

represents the constraint that an entity which is a member of a category must exist in

only one of its superclasses. For example, in figure 3.10 an employee may be a graduate

or non-graduate.

From attribute inheritance point of view, in category the attribute inheritance works

more selectively as a subclass entity inherits only the attributes of the superclass to

which it belongs and not of all its superclasses. On the other hand, in a lattice the

subclass inherits all the attributes of its superclasses.

3.4.2 Types of Category

Like completeness constraint on specialization and generalization, a category can be

total or partial depending on whether all the entities of its superclasses must belong to

the category or not. In case all the entities of the superclasses must belong to the

subclass (category), the category is said to be total otherwise partial. In a partial

category, the subclass (category) is connected with the circle using single line. In figure

3.10, since it is not necessary that all graduates or non-graduates will be an employee,

the Employee subclass is a partial category and connected with the circle using single

line. Similary, the EngineeringProject category in figure 3.10 is also partial as for a

long-term or short-term project it is not mandatory that it will an engineering project.

On the other hand, in a total category, the subclass (category) is connected with the

circle using double line. For example, in figure 3.11 (a), every salaried or hourly-paid

employee must be member of Employee. Hence, the category Employee is a total

category and it is connected with the circle using double lines. A total category can have

alternate representation using the concept of specialization/generalization. Figure 3.11

(b) presents the alterate representation of Employee category (shown in figure 3.11 (a))

using specialization/generalization. The choice of representation to use category or

specialization/generalization is subjective. If the superclasses for a particular subclass

represent the same type of entities and share numerous attributes

specialization/generalization is preferred; otherwise use of category to model the

relationships is more appropriate.

Figure 3.11 – A total category and alternate representation (a) A total category –

Employee, (b) Alternate representation of Employee using specialization/generalization

3.5 Association, Aggregation and Composition

Some times we need to model association between distinct classes in which one entity

represents a larger entity (the ‘whole’) consisting of smaller entities (the ‘parts’).

Association represents the ability to associate objects from several independent

classes, i.e., to model ‘IS-ASSOCIATED-WITH’ relationship. It is a type of relationship in

which all objects have their own lifecycle and there is no owner. For example, consider

the relationship between Teacher and Student. Multiple students can be associated with

a single teacher and a single student can be associated with multiple teachers but, there

is no ownership between the objects and both have their own lifecycle. Both can be

created and deleted independently.

Both aggregation and composition are special kinds of associations and indicate

something more about the relationship. Aggregation is a special kind of association in

which all objects have their own lifecycle but there is ownership, and child object can not

belongs to another parent object. In other words, in an aggregation the instances cannot

(b)

(a)

have cyclic aggregation relationships (i.e. a part can not contain its whole). Aggregation

is used to represent ownership or a whole/part (‘HAS-A’ or ‘IS-A-PART-OF’) relationship.

For example, consider the association between Department and Teacher which models

“Department HAS Teacher” or “Teacher IS-A-PART-OF Department” relationship. This

represents an aggregation in which the entity type Department is the owner and a single

teacher can not belongs to multiple departments, but if we delete the department, the

teacher object will not destroy. Similarly, an order consists of several products, but a

product continues to exist even if the order is destroyed. Hence, the relationship

between Order and Product is an aggregation.

Like aggregation, Composition is also used to model ‘HAS-A’ or ‘IS-A-PART-OF’

relationships but, in a composition, the child objects do not have their own lifecycle. That

is, if a parent object is deleted all its child objects will also be deleted. In other words, a

composition represents a strong ownership and coincidental lifetime between the ‘whole’

(parent) and the ‘part’ (child). Composition specifies that the ‘whole’ is responsible for

the disposition of ‘parts’, i.e. the ‘whole’ must manage the creation and destruction of its

‘parts’. For illustration purpose, consider the relationship between University and

Department. A university can have multiple departments but, there is no independent

life of departments, i.e., if the university closes, the departments will no longer exist.

Moreover, a department can not be a part of more than one university. Similarly, the

relationship between House and Room represents a composition. A house can contain

multiple rooms but, there is no independent life of room and any room can not belongs

to two different houses. If we delete the house, rooms will be automatically deleted.

Similarly, a polygon is a composition of several lines. If the polygon is destroyed, so are

the lines.

